

INTEGRATED ACADEMIC STUDIES OF PHARMACY

FIFTH YEAR OF STUDIES

academic year 2024/2025

Course: 19.GE009

Applied pharmaceutical biotechnology

The course is evaluated with 6 ECTS. The course consists of 4 classes of active teaching per week (2 classes of lectures and 1 class of practice and 1 class of project).

TEACHERS AND ASSOCIATES:

	Name and surname	Email	
1.	Slobodan Novokmet	slobodan.novokmet@fmn.kg.ac.rs	Full Professor
2.	Isidora Milosavljevic	isidora.milosavljevic@fmn.kg.ac.rs	Assistant Professor
3.	Jovana Novakovic	jovana.novakovic@fmn.kg.ac.rs	Assistant Professor
4.	Maja Savic	maja.savic@fmn.kg.ac.rs	Teaching Assistant
5.	Nevena Draginic	nevenasdraginic@gmail.com	Teaching Assistant
6.	Jelena Terzic	jelena.terzic@fmn.kg.ac.rs	Junior Teaching Assistant

COURSE STRUCTURE:

Modul number	Name of the module	N° of weeks	Lectures	Practice	Other active classes	Teacher - head of the module
1	Introduction to biotechnology with reference to Pharmaceutical science	5	2	1	1	asst. prof. Isidora Milosavljevic
2	Application of rDNA technology and genetic engineering in the production of cytokines	5	2	1	1	asst. prof. Jovana Novakovic
3	Application of rDNA technology and genetic engineering in the production of hormones and enzymes	5	2	1	1	asst. prof. Jovana Novakovic
						Σ30+15+15=60

ASSESSMENT:

The student masters the subject by modules. The grade is equivalent to the number of points earned (see tables). Points are earned in two ways:

- **1. ACTIVITY DURING THE LESSON:** In this way, the student can gain up to 50 points:
- A. PRESENCE AND ACTIVITY DURING THE CLASS: up to 10 points
- **B. SEMINAR:** The student writes a seminar paper on a given topic and presents it. In this way, the student can gain up to 40 points.
- **2. FINAL EXAMINATION:** The test consists of multiple choice questions. In this way, the student can gain up to 50 points.

MAXIMUM POINTS			
1	STUDENT'S ACTIVITY DURING THE LECTURES	10	
2	PROJECT	20	
3	FINAL EXAMINATION (written)	70	
Σ		100	

The final grade is formed as follows:

In order to complete the course, the student must acquire at least 51 point in summary.

number of acquired points	grade
0 - 50	5
51 - 60	6
61-70	7
71 - 80	8
81 - 90	9
91 - 100	10

LITERATURE:

the name of the textbook	authors	publisher	the library
Biopharmaceuticals: Biochemistry & Biotechnology, 3 rd Edition	Walsh G (Ed)	John Wiley & Sons Ltd., Chichester, UK, 2007	Have
Pharmaceutical Biotechnology	Guzman CA, Feuerstein GZ (Ed)	Springer Science Business Media, LCC, Landes Bioscience, 2009	Have
Pharmaceutical Biotechnology: An Introduction for Pharmacists and Pharmaceutical Scientists, 2nd Edition.	Crommelin DJA, Sindelar RD (Eds)	Taylor & Francis Ltd., London, UK, 2002	Have
Handbook of Pharmaceutical Biotechnology	Rho JP, Louie SG (Eds)	Pharmaceutical Products Press, Binghamton, N. Y., 2003	Have

PROGRAM:

FIRST MODULE: INTRODUCTION TO BIOTECHNOLOGY WITH REFERENCE TO PHARMACEUTICAL SCIENCE

TEACHING UNIT 1 (FIRST WEEK):

INTRODUCTION TO PHARMACEUTICAL BIOTECHNOLOGY

lectures - 2 classes	Practice and project - 2 classes
Introductory lecture, introduction in the pharmaceutical biotechnology. Emergence of Biotechnology Industry. Challenges Facing "Biogenerics". Categories of biopharmaceuticals. Development of biopharmaceuticals.	Introductory lecture, introduction in the pharmaceutical biotechnology. Emergence of Biotechnology Industry. Challenges Facing "Biogenerics". Categories of biopharmaceuticals. Development of biopharmaceuticals.

TEACHING UNIT 2 (SECOND WEEK):

REGULATORY ISSUES IN BIOTECHNOLOGY

lectures - 2 classes	Practice and project - 2 classes
History of biologics regulation in United States. Early	History of biologics regulation in United States. Early
Biologics Regulation. Modern Biologics Regulation.	Biologics Regulation. Modern Biologics Regulation.
Regulatory classification of proteins. Definitions and	Regulatory classification of proteins. Definitions and key
key terminology. Application of Definitions to proteins:	terminology. Application of Definitions to proteins: Is it a
Is it a drug or a biologic? Regulatory Approval Path for	drug or a biologic? Regulatory Approval Path for Proteins.
Proteins. Intellectual Property Right and Protection.	Intellectual Property Right and Protection.

TEACHING UNIT 3 (THIRD WEEK):

SAFETY IN BIOTECHNOLOGY

lectures - 2 classes	Practice and project - 2 classes
Biological Precautions. Chemical Precautions. Personal	Biological Precautions. Chemical Precautions. Personal
Precautions. Biosafety. Pathogenic Microorganisms and	Precautions. Biosafety. Pathogenic Microorganisms and
Fungi.	Fungi.

TEACHING UNIT 4 (FOURTH WEEK):

RECOMBINANT DNA TECHNOLOGY

lectures - 2 classes	Practice and project - 2 classes
Recombinant DNA. DNA cloning. Creating the clone.	Recombinant DNA. DNA cloning. Creating the clone.
Isolating the clone. Making recombinant DNA and	Isolating the clone. Making recombinant DNA and rDNA
rDNA technology. Advantages and disadvantages of	technology. Advantages and disadvantages of recombinant
recombinant DNA technology.	DNA technology.

TEACHING UNIT 5 (FIFTH WEEK):

PRODUCTION OF THERAPEUTIC PROTEINS

lectures - 2 classes	Practice and project - 2 classes
Sources for the production of biopharmaceuticals (E.	Sources for the production of biopharmaceuticals (E. Coli, S.
Coli, S. Cerevisiae, cell cultures and others).	Cerevisiae, cell cultures and others). Biosynthesis of
Biosynthesis of biopharmaceuticals (upstream	biopharmaceuticals (upstream processes). Isolation of
processes). Isolation of therapeutic proteins from cell	therapeutic proteins from cell cultures (downstream
cultures (downstream processes).	processes).

SECOND MODULE: APPLICATION OF rDNA TECHNOLOGY AND GENETIC ENGINEERING IN THE PRODUCTION OF CYTOKINES

TEACHING UNIT 6 (SIXTH WEEK):

INTERFERON BIOTECHNOLOGY

lectures - 2 classes	Practice and project - 2 classes
Cytokines. Cytokines receptor. The biochemistry of	Cytokines. Cytokines receptor. The biochemistry of
interferon α , β and γ . Production and medical uses of	interferon α , β and γ . Production and medical uses of
interferon α , β and γ . Interferon toxicity.	interferon α , β and γ . Interferon toxicity.

TEACHING UNIT 7 (SEVENTH WEEK):

INTERLEUKIN BIOTECHNOLOGY

lectures - 2 classes	Practice and project - 2 classes				
Interleukin 2 production. Interleukin 2 and cancer Interleukin 2 production. Interleukin 2 and cancer					
treatment. Interleukin 2 and infectious diseases. Inhibition	treatment. Interleukin 2 and infectious diseases. Inhibition				
of interleukin 2 activity. Biochemistry of interleukin 1. of interleukin 2 activity. Biochemistry of interleukin					
Interleukin 1 biotechnology.	Interleukin 1 biotechnology.				

TEACHING UNIT 8 (EIGHTH WEEK):

TUMOR NECROSIS FACTORS BIOTECHNOLOGY

lectures - 2 classes	Practice and project - 2 classes	
Tumor necrosis factors biochemistry. Biological activities of tumor necrosis factor α . Tumor necrosis factors receptors. Biotechnology of tumor necrosis factors.	Tumor necrosis factors biochemistry. Biological activities of tumor necrosis factor α. Tumor necrosis factors receptors. Biotechnology of tumor necrosis factors.	

TEACHING UNIT 9 (NINTH WEEK):

HEMATOPOIETIC GROWTH FACTORS BIOTECHNOLOGY

lectures - 2 classes	Practice and project - 2 classes				
The interleukins as hematopoietic growth factors. The interleukins as hematopoietic growth factors					
Granulocyte colony-stimulating factor. Macrophage	Granulocyte colony-stimulating factor. Macrophage				
colony-stimulating factor. Granulocyte macrophage	colony-stimulating factor. Granulocyte macrophage				
colony-stimulating factor. Erythropoietin. Trombopoietin.	colony-stimulating factor. Erythropoietin. Trombopoietin.				

TEACHING UNIT 10 (TENTH WEEK):

GROWTH FACTORS AND WOUND HEALING

lectures - 2 classes	Practice and project - 2 classes			
Insulin-like growth factors. Insulin-like growth factor Insulin-like growth factors. Insulin-like growth factor				
biological effect. Epidermal growth factor. Platelet- biological effect. Epidermal growth factor. Platelet-				
derived growth factor. Fibroblast growth factor.	derived growth factor. Fibroblast growth factor.			
Transforming growth factors. Neurotrophic factors.	Transforming growth factors. Neurotrophic factors.			

THIRD MODULE: APPLICATION OF rDNA TECHNOLOGY AND GENETIC ENGINEERING IN THE PRODUCTION OF HORMONES AND ENZYMES

TEACHING UNIT 11 (ELEVENTH WEEK):

INSULIN AND GLUCAGON BIOTECHNOLOGY

lectures - 2 classes	Practice and project - 2 classes		
The insulin molecule. Insulin production. Production of	The insulin molecule. Insulin production. Production of		
human insulin by recombinant DNA technology.	human insulin by recombinant DNA technology.		
Formulation of insulin products. Engineered insulins.	Formulation of insulin products. Engineered insulins.		
Glucagon biotechnology.	Glucagon biotechnology.		

TEACHING UNIT 12 (TWELFTH WEEK):

HUMAN GROWTH HORMONES BIOTECHNOLOGY

la atumas 2 alassas	Duration and project 2 classes		
lectures - 2 classes	Practice and project - 2 classes		
Growth hormone receptor. Biological effect of growth	Growth hormone receptor. Biological effect of growth		
1 0	hormone. Therapeutic uses of growth hormone. The		
gonadotrophins (follicle-stimulating hormone, luteinizing	gonadotrophins (follicle-stimulating hormone, luteinizing		
hormone and human chorionic gonaotrophin). Medical	hormone and human chorionic gonaotrophin). Medical		
application of gonadotrohins.	application of gonadotrohins.		

TEACHING UNIT 13 (THIRTEENTH WEEK):

RECOMBINANT BLOOD PRODUCTS

lectures - 2 classes	Practice and project - 2 classes
Factor VIII and haemophilia. Production of factor VIII. Factors IX, VIIa and XIII.	Metabolism of water and bioelements. Metabolism of water and bioelements, inorganic substances - minerals. Tissues. Liver.

TEACHING UNIT 14 (FOURTEENTH WEEK):

BIOTECHNOLOGY OF ANTICOAGULANTS AND THROMBOLYTIC AGENTS

lectures - 2 classes	Practice and project - 2 classes
Hirudin. Antithrombin. First-generation tissue plasminogen activator. Engineered tissue plasminogen activator. Streptokinase. Urokinase. Staphylokinase. α ₁ -antitrypsin.	Hirudin. Antithrombin. First-generation tissue plasminogen activator. Engineered tissue plasminogen activator. Streptokinase. Urokinase. Staphylokinase. α ₁ -antitrypsin.

TEACHING UNIT 15 (FIFTEENTH WEEK):

BIOTECHNOLOGY OF ENZYMES WITH THERAPEUTICALLY VALUES

lectures - 2 classes				Practice and project - 2 classes
Asparaginase.	DNase.	Glucocerebrosi	idase. A-	Asparaginase. DNase. Glucocerebrosidase. A-
galactosidase.	Urate-oxidase	e. Laronidase.	Superoxide	galactosidase. Urate-oxidase. Laronidase. Superoxide
dismutase. Debriding agents. Digestive aids.				dismutase. Debriding agents. Digestive aids.

LECTURES SCHEDULE

Thurseday

09:00 - 10:30

SCHEDULE OF PRACTICE AND PROJECT

Thurseday

11:00 - 12:30

module	Sunday	type	method unit name	a teacher
	1 P&P	L	Introduction to Pharmaceutical Biotechnology.	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
		Introduction to Pharmaceutical Biotechnology.	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic	
	2	L	Regulatory Issues in Biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
1	2	P&P	Regulatory Issues in Biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
1	3 P&P	L	Safety in Biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
			Safety in Biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
	4	L	Recombinant DNA technology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
4	4	P&P	Recombinant DNA technology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic

module	Sunday	type	method unit name	a teacher
1 5	L	Production of therapeutic proteins	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic	
	5	P&P	Production of therapeutic proteins	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
	6 P&P	L	Interferon biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
		P&P	Interferon biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
2 7	-	L	Interleukin biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
	7	P&P	Interleukin biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
	0	L	Tumor necrosis factors biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
	8	P&P	Tumor necrosis factors biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic

module	Sunday	type	method unit name	a teacher
	2 P&P L 10 P&P	L	Hematopoietic growth factors biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
2		P&P	Hematopoietic growth factors biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
2		L	Growth factors biotechnology and wound healing	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
		P&P	Growth factors biotechnology and wound healing	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
3 12	11	L	Insulin and glucagon biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
		P&P	Insulin and glucagon biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
		L	Human growth hormones biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
	12		Human growth hormones biotechnology	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic

module	Sunday	type	method unit name	a teacher
3	13	L	Recombinant blood products	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
		P&P	Recombinant blood products	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
	14	L	Biotechnology of anticoagulants and thrombolytic agents	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
		P&P	Biotechnology of anticoagulants and thrombolytic agents	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
	15	L	Biotechnology of enzymes with therapeutically values	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic
		P&P	Biotechnology of enzymes with therapeutically values	asst. prof. Isidora Milosavljevic asst. prof. Jovana Novakovic