

INTEGRATED ACADEMIC STUDIES OF PHARMACY

SECOND YEAR OF STUDIES

Course: 19.BE001 FUNDAMENTALS OF HUMAN BIOCHEMISTRY The course is evaluated with 5 ECTS. The course consists of 4 classes of active teaching per week (2 classes of lectures and 2 classes of small groups activities).

TEACHERS AND ASSOCIATES:

No		E-mail address	Title
1.	Marina Mitrović	mitrovicmarina34@gmail.com	Full Professor
2.	Ivanka Zelen	ivankazelen@gmail.com	Full Professor
3.	Marijana Stanojević	marijanas14@gmail.com	Associate Professor
4.	Ivana Nikolić	angelkg2009@gmail.com	Associate Professor
5.	Milan Zarić	zaricmilan@gmail.com	Associate Professor
6.	Marija Andjelković	marijabcd@gmail.com	Associate Professor
7.	Petar Čanović	petar.c89@gmail.com	Associate Professor
8.	Sanja Stanković	sanjast2013@gmail.com	Assistant Professor

COURSE STRUCTURE:

Modul number	Name of the module	N° of weeks	Lectures	Work in a small group	Teacher - head of the module
1	Enzymology. Energy metabolism 1.	6	2	2	prof. dr Marina Mitrović
2	Energy metabolism 2 - lipids, nucleic acids and proteins.	5	2	2	prof. dr Ivanka Zelen
3	Biochemistry of hormones, organs, tissues, integrative metabolism and mechanism of drug action	4	2	2	prof. dr Milan Zarić
Σ30+30=60					

ASSESSMENT:

The student masters the subject by modules. The grade is equivalent to the number of points earned (see tables). Points are earned in two ways:

- **1. ACTIVITY DURING THE LESSON:** In this way, the student may earn up to 30 points: In a special part of the class, he answers two questions from that week of lectures and receives 0-2 points.
- **2. FINAL ORAL EXAMINATION:** In this way, a student can gain up to 70 points by answering three questions from three different modules, for which he/she is evaluated. If a student shows insufficient knowledge on any question, the examination ends and student fails the exam. A student has the right to take the final oral exam if he/she has achieved more than 50% of the points for the activity.

		MAXIMUM POINTS		
	MODULE	activity during classes	final oral examination	Σ
1	Enzymology. Energy metabolism 1 – ROS and carbohydrates.	12		
2	Energy metabolism 2 - lipids, nucleic acids and proteins.	10	70	
3	Biochemistry of hormones, organs, tissues and integrative metabolism.	8		
	Σ	30	70	100

The final grade is formed as follows:

In order to complete the course, the student must acquire at least 51 point in summary, has sufficient number of points for each module and pass oral examination.

In odrer to pass the module the student must acquire more than 50% of points for activity during classes in each module.

number of acquired points	grade
0 - 50	5
51 - 60	6
61-70	7
71 - 80	8
81 - 90	9
91 - 100	10

LITERATURE:

the name of the textbook	authors	publisher	the library
Biochemistry for the Pharmaceutical Sciences 1st Edition	Charles P. Woodbury Jr.	Jones and Bartlett Publishers, Inc	does not have
Marx's fundamentals of medical biochemistry - a clinical approach	M. Lieberman, AD Marks, C. Marks	Lippincott Williams & Wilkins	does not have
Biochemistry	Garrett RH, Grisham CM.	Cengage Learning	does not have

PROGRAM:

FIRST MODULE: ENZYMOLOGY. ENERGY METABOLISM 1-ROS AND CARBOHYDRATES

TEACHING UNIT 1 (FIRST WEEK):

INTRODUCTION TO BIOCHEMISTRY. ENZYMOLOGY

lectures - 2 classes	small groups activities - 2 classes
Introduction to Biochemistry. Introductory lecture,	Introduction to Biochemistry. Introductory lecture,
introduction in biochemistry, biochemical organization	introduction in biochemistry, biochemical organization cell-
cell- and sub – cellular organelles. Water and types of	andsub – cellular organelles. Water and types of bonds,
bonds, hydrogen bond, concept of hydrophilicity and	hydrogen bond, concept of hydrophilicity and
hydrophobicity.	hydrophobicity.
Enzymology. The nature of enzymes, general principles	Enzymology. The nature of enzymes, general principles of
of enzymes' reactions, kinetics and enzymatic activities.	enzymes' reactions, kinetics and enzymatic activities.

TEACHING UNIT 2 (SECOND WEEK):

REGULATION OF ENZYME ACTIVITY. CLINICAL ENZYMOLOGY

lectures - 2 classes	small groups activities - 2 classes
Enzymology. Regulation of enzyme activity,	Enzymology . Regulation of enzyme activity, mechanisms of
mechanisms of activation and inhibition. Allosteric	activation and inhibition. Allosteric enzymes, clinically
enzymes, clinically important enzymes, nomenclature	important enzymes, nomenclature and classification of
and classification of enzymes.	enzymes.

TEACHING UNIT 3 (THIRD WEEK):

VITAMINS AND COENZYMES

lectures - 2 classes	small groups activities - 2 classes
Enzymology. Biochemistry of vitamins, hydrosoluble	Enzymology. Biochemistry of vitamins, hydrosoluble and
and liposoluble vitamins, enzyme cofactors,	liposoluble vitamins, enzyme cofactors, cosubstrates,
cosubstrates, prosthetic groups.	prosthetic groups.

UNIT 4 (FOURTH WEEK):

GLYCOLYSIS, HMP PATHWAY AND PDH COMPLEX.

lectures - 2 classes	small groups activities - 2 classes
Glycolysis. HMP pathway and PDH complex.	Glycolysis. HMP pathway and PDH complex.
Digestion and absorption of carbohydrates. Glycolysis	Digestion and absorption of carbohydrates. Glycolysis and
and the hexose-monophosphate pathway. Oxidative	the hexose-monophosphate pathway. Oxidative
decarboxylation of pyruvate.	decarboxylation of pyruvate.

UNIT 5 (FIFTH WEEK):

KREBS CYCLE AND OXIDATIVE PHOSPHORYLATION

lectures - 2 classes	small groups activities - 2 classes
Krebs cycle. Oxidative phosphorylation. Metabolism, anabolic and catabolic processes. Sources and fate of acetyl - CoA and the Krebs cycle. Oxidoreduction processes, energy-rich compounds, respiratory chain.	Krebs cycle. Oxidative phosphorylation. Metabolism, anabolic and catabolic processes. Sources and fate of acetyl - CoA and the Krebs cycle. Oxido-reduction processes, energy-rich compounds, respiratory chain.

GLYCOGEN AND GLUCONEOGENESIS

lectures - 2 classes	small groups activities - 2 classes
Carbohydrate metabolism.	Carbohydrate metabolism.
Glycogen metabolism – glycogenolysis, glycogenesis.	Glycogen metabolism – glycogenolysis, glycogenesis.
Gluconeogenesis.	Gluconeogenesis.

SECOND MODULE: ENERGY METABOLISM 2 - LIPIDS. ENERGY METABOLISM 3 – NUCLEIC ACIDS AND PROTEINS

UNIT 7 (SEVENTH WEEK):

ROS AND ANTIOXIDATIVE PROTECTION

lectures - 2 classes	small groups activities - 2 classes
ROS and antioxidant protection.	ROS and antioxidant protection.
The mechanism of formation of reactive oxygen species.	The mechanism of formation of reactive oxygen species.
Damage to biomacromolecules mediated by the action of	Damage to biomacromolecules mediated by the action of
ROS. Antioxidants and antioxidant protection.	ROS. Antioxidants and antioxidant protection.

UNIT 8 (EIGHTH WEEK):

LIPID METABOLISM

lectures - 2 classes	small groups activities - 2 classes
Lipid metabolism. Digestion and absorption of lipids. β - oxidation of fatty acids, ketone bodies. Oxidation of fatty	Lipid metabolism. Digestion and absorption of lipids. β - oxidation of fatty acids, ketone bodies. Oxidation of fatty
acids with an odd number of carbon atoms. Oxidation of	acids with an odd number of carbon atoms. Oxidation of
fatty acids with unsaturated bonds. ω -oxidation. α -oxidation. Synthesis of fatty acids and triacylglycerol.	fatty acids with unsaturated bonds. ω -oxidation. α -oxidation. Synthesis of fatty acids and triacylglycerol.

UNIT 9 (NINTH WEEK):

CHOLESTEROL, BILE ACIDS AND LIPOPROTEINS

0110111011, 2111111111111111111111111111				
lectures - 2 classes	small groups activities - 2 classes			
Cholesterol, bile acids and lipoproteins. Synthesis of	Cholesterol, bile acids and lipoproteins. Synthesis of			
cholesterol, bile acids and complex phospholipids.	cholesterol, bile acids and complex phospholipids.			
Transport of lipids - lipoproteins of blood plasma.	Transport of lipids - lipoproteins of blood plasma.			

UNIT 10 (TENTH WEEK):

NUCLEIC ACIDS

lectures - 2 classes	small groups activities - 2 classes
Nucleic acids. Catabolism and anabolism of nucleotides and nucleic acids, metabolism of purines and pyrimidines.	Nucleic acids. Catabolism and anabolism of nucleotides and nucleic acids, metabolism of purines and pyrimidines.

UNIT 11 (ELEVENTH WEEK):

AMINO ACIDS AND PROTEINS, PROTEIN SYNTHESIS

lectures - 2 classes	small groups activities - 2 classes	
Amino acids and proteins, protein synthesis.	Amino acids and proteins, protein synthesis. Digestion	
Digestion and absorption of proteins. Catabolism of amino	and absorption of proteins. Catabolism of amino acids	
acids(transamination, oxidative deamination, ammonia	(transamination, oxidative deamination, ammonia	
metabolism). Urea synthesis, glutamine synthesis. Non-	metabolism). Urea synthesis, glutamine synthesis. Non-	
protein nitrogenous compounds. Protein synthesis,	protein nitrogenous compounds. Protein synthesis,	
regulation of protein synthesis.	regulation of protein synthesis.	

THIRD MODULE: BIOCHEMISTRY OF HORMONES, ORGANS, TISSUES. INTEGRATIVE METABOLISM AND MECHANISM OF DRUG ACTION

UNIT 12 (TWELFTH WEEK):

BIOCHEMISTRY OF HORMONES

lectures - 2 classes	small groups activities - 2 classes
Biochemistry of hormones.	Biochemistry of hormones.
Chemical structure, synthesis, transport, mechanism of	Chemical structure, synthesis, transport, mechanism of
action.	action.

UNIT 13 (THIRTEENTH WEEK):

METABOLISM OF WATER AND BIOELEMENTS. TISSUES

lectures - 2 classes	small groups activities - 2 classes	
Metabolism of water and bioelements.	Metabolism of water and bioelements.	
Metabolism of water and bioelements, inorganic	Metabolism of water and bioelements, inorganic substances	
substances - minerals. Tissues. Liver.	- minerals. Tissues. Liver.	

TEACHING UNIT 14 (FOURTEENTH WEEK):

INTEGRATIVE METABOLISM

lectures - 2 classes	small groups activities - 2 classes	
Integrative metabolism.	Integrative metabolism.	
The relationship between the metabolism of	The relationship between the metabolism of carbohydrates,	
carbohydrates, lipids and amino acids.	lipids and amino acids.	

UNIT 15 (FIFTEENTH WEEK):

MECHANISM OF DRUG ACTION

lectures - 2 classes	small groups activities - 2 classes
Mechanism of drug action. Competitive inhibitors,	Mechanism of drug action. Competitive inhibitors,
regulatory enzyme metabolic roads: respiratory chain,	regulatory enzyme metabolic roads: respiratory chain,
HMG-(CoA)-reductase, ACE-inhibitors, xanthine oxidase	HMG-(CoA)-reductase, ACE-inhibitors, xanthine oxidase
inhibitors, antibiotics, antimetabolites and cytostatics.	inhibitors, antibiotics, antimetabolites and cytostatics.

LECTURES SCHEDULE

MONDAY

15:00 - 16:30 Biochemistry classroom

SCHEDULE OF SMALL GROUP ACTIVITIES

MONDAY

16:30 - 18:00 Biochemistry classroom

module	Sunday	type	method unit name	a teacher
		L	Introduction to biochemistry. Enzymology	prof. Marina Mitrovic
	1	SGA	Introduction to biochemistry. Enzymology	prof. Marina Mitrovic
		L	Regulation of enzyme activity. Clinical enzymology	prof. Ivanka Zelen
1	2	SGA	Regulation of enzyme activity. Clinical enzymology	prof. Ivanka Zelen
•		L	Vitamins and coenzymes	prof. Milan Zaric
	3	SGA	Vitamins and coenzymes	prof. Milan Zaric
		L	Glycolysis, Hexose-moniphosphate pathway and oxidative decarboxylation.	prof. Marija Andjelkovic
	4	SGA	Glycolysis, Hexose-moniphosphate pathway and oxidative decarboxylation.	prof. Marija Andjelkovic
1	5	L	Krebs cycle and oxidative phosphorylation.	prof. Marijana Stanojević

module	Sunday	type	method unit name	a teacher
		SGA	Krebs cycle and oxidative phosphorylation.	prof. Marijana Stanojevic
		L	Glycogen - glycogenesis and glycogenolysis. Gluconeogenesis.	prof. Petar Čanović
	6	SGA	Glycogen - glycogenesis and glycogenolysis. Gluconeogenesis.	prof. Petar Čanović
	7	L	ROS and antioxidants.	prof. Ivanka Zelen
		SGA	ROS and antioxidants.	prof. Ivanka Zelen
2		L	Fat metabolism.	prof. Milan Zaric
	8	SGA	Fat metabolism.	prof. Milan Zaric
2	9	L	Cholesterol and lipoproteins. Bile metabolism.	prof. Marina Mitrovic

module	Sunday	type	method unit name	a teacher
		SGA	Cholesterol and lipoproteins. Bile metabolism.	prof. Marina Mitrovic
		L	Nucleic acid metabolism.	prof.Ivana Nikolic
	10	SGA	Nucleic acid metabolism.	prof. Ivana Nikolic
		L	Metabolism of amino acids and proteins. Protein synthesis.	prof. Ivana Nikolic
	11	SGA	Metabolism of amino acids and proteins. Protein synthesis.	prof. Ivana Nikolic
		L	Biochemistry of hormones.	prof. Marijana Stanojevic
3	12	SGA	Biochemistry of hormones.	prof. Marijana Stanojevic
		L	Metabolism of water and bioelements; Tissues.	prof. Marija Andjelkovic
3	13	SGA	Metabolism of water and bioelements; Tissues.	prof. Marija Andjelkovic

module	Sunday	type	method unit name	a teacher
		L	Integrative metabolism.	prof. Petar Canovic
3	14	SGA	Integrative metabolism.	prof. Petar Canovic
3		L	Mechanism of drug action.	prof. Sanja Stankovic
	15	SGA	Mechanism of drug action.	prof. Sanja Stankovic
]		I	EXAM (JANUARY-FEBRUAR	RY TERM)

Oral exam questions

A (one question is drawn)

- 1. Water and connection types. Hydrophilicity and hydrophobicity.
- 2. Chemical nature of enzymes. General principles of enzyme activity. Kinetics of enzymatic activity.
- 3. Main classes of biomolecules and their basic properties
- 4. Types of enzyme inhibition
- 5. Regulation of enzyme activity. Postsynthetic regulation
- 6. Classification and nomenclature of enzymes
- 7. Oxidoreductases and transferases
- 8. Hydrolases and lyases
- 9. Isomerases and ligases
- 10. Functional and non-functional blood plasma enzymes
- 11. Transaminases (AST and ALT)
- 12. γ -glutamyl transferase
- 13. Lactate dehydrogenase
- 14. Alkaline and acid phosphatase
- 15. Liposoluble vitamins
- 16. B complex vitamins as cofactors in enzymatic reactions: niacin and riboflavin
- 17. The role of coenzymes for the transfer of phosphate groups in enzymatic reactions. Vitamin V12 and folic acid.
- 18. Complexes of the respiratory chain.
- 19. ATR synthase and the release of newly synthesized ATR from mitochondria. R/O ratio in the respiratory chain.
- 20. Free radicals. Oxygen free radicals.
- 21. Places of production of oxygen free radicals. Tissue damage caused by radicals.
- 22. Nitrosative stress
- 23. Superoxide dismutase, catalase and glutathione peroxidase
- 24. Non-enzymatic antioxidants
- 25. Digestion and absorption of carbohydrates
- 26. Glycolysis: phases, regulation, energy balance
- 27. Pentozophosphate pathway

- 28. Glycogenesis
- 29. Glycogenolysis
- 30. Gluconeogenesis
- 31. Oxidative decarboxylation of pyruvate
- 32. Krebs cycle

B (one question is drawn)

- 1. Beta oxidation of fatty acids
- 2. Fatty acids and lipid digestion
- 3. Ketone bodies
- 4. Synthesis of fatty acids
- 5. Cholesterol
- 6. Bile acids
- 7. Phospholipids
- 8. Lipoproteins. Chylomicrons
- 9. VLDL, LDL and HDL lipoproteins
- 10. Breakdown of nucleic acids and nucleotides. Breakdown of AMR and GMP
- 11. Breakdown of nucleic acids and nucleotides. Decomposition of pyrimidines
- 12. De novo synthesis of purine nucleotides
- 13. Biosynthesis of pyrimidine nucleotides
- 14. Digestion and absorption of proteins
- 15. Gamma-glutamyl cycle
- 16. Transamination and oxidative deamination
- 17. Glutamate-dehydrogenase
- 18. Urea synthesis
- 19. Regulation of the urea cycle. Glutamine. Creatine and creatinine.
- 20. Amino acids. Division of amino acids.
- 21. Eukaryotic translation
- 22. Protein structure. Properties of peptide bonds.

C (one question is drawn)

- 1. Basic characteristics and divisions of hormones
- 2. Secondary messengers
- 3. Steroid hormones
- 4. Control of hormone secretion
- 5. Hormones of the adrenal medulla
- 6. Thyroid hormones
- 7. Insulin
- 8. Glucagon
- 9. Macroelements
- 10. Copper, zinc and selenium
- 11. Liver functions
- 12. Metabolism of ethanol in the liver
- 13. Hemoprotein metabolism
- 14. The state of satiety
- 15. State of starvation
- 16. Diabetes mellitus. Hypoglycemia
- 17. Branched-chain amino acids
- 18. Respiratory chain inhibitors
- 19. HMG-CoA-reductase inhibitors statins
- 20. ACE inhibitors
- 21. Xanthine oxidase inhibitors