

INTEGRATED ACADEMIC PHARMACY STUDIES

FIRST YEAR OF STUDY

academic 2024/2025.

Course:

ANALYTICAL CHEMISTRY

The course is evaluated with 8 ESPB. There are 6 hours of active teaching per week (4 hours of lectures and 2 hours of work in a small group).

TEACHERS AND ASSOCIATES:

	Име и презиме	Email address	title
1.	Marija D. Živković	mzivkovic@kg.ac.rs	Associate Professor
2.	Snežana Jovanović	snezanaj@kg.ac.rs	Assistant professor
3.	Ana S. Živanović	ana_Živanović@outlook.com	Facilitator
4.	Mirjana Jakovljević	mirjana.tkb@gmail.com	Facilitator

COURSE STRUCTURE:

Module	Module name	Week	Lectures	Work in a small group	Teacher- supervisor module
1	Qualitative chemical analysis	7	4	2	Prof. dr Marija D. Živković Doc. Dr. Snežana Jovanović
2	Quantitative chemical analysis	8	4	2	Prof. dr Marija D. Živković Doc. Dr. Snežana Jovanović
$\Sigma 60+30=90$					

EVALUATION:

Студент савладава предмет на основу поена остварених на предиспитним активностима и завршном тесту. Оцена је еквивалентна броју стечених поена (види табеле). Поени се стичу на следећи начин: The student overcomes the course based on the points achieved in the pre-examination activities and the final test. The score is equivalent to the number of gained points (see tables). Points are earned as follows:

ACTIVITY DURING CLASSES: The student can gain up to 30 points by taking 2 exam question from that week, answering and receiving 0-2 points in accordance with the demonstrated knowledge.

FINAL EXAM: The student can	gain	up to	70 points
-----------------------------	------	-------	-----------

Module		MAXIMUM POINTS		
		Activity during classes	Final exam	Σ
1	Qualitative chemical analysis	14		14
2	Quantitative chemical analysis	16		16
	Final exam		70	70
	Σ	30	70	100

The final grade is formed as follows:

In order to pass the course, student must gain a minimum of 51 points and pass all the modules. To pass the module the student must:

- 1. Gain more than 50% of the points in that module
- 2. Gains more than 50% of the points provided for teaching activity in each module
- 3. Pass the module test, ie to have more than 50% correct answers.

NUMBER OF POINTS GAIN	MARK
0 - 50	5
51 - 60	6
61 - 70	7
71 - 80	8
81 - 90	9
91 - 100	10

TESTS BY MODULES

FINALE TEST

FINALE TEST 0-70 POINTS

EVALUATION OF FINAL TEST

The test has 35 questions Each question is worth 2 points

THE PROGRAM:

FIRSTH MODULE: Qualitative methods of analysis

TEACHING UNIT 1 (FIRST WEEK):

INTRODUCTION TO ANALYTICAL CHEMISTRY AND ITS SIGNIFICANCE. THEORETICAL FUNDAMENTALS OF CHEMICAL METHODS OF ANALYSIS.

lectures 4 hours	work in a small group for 2 hours
Analytical chemistry	Introduction to experimental work
Qualitative and quantitative analysis	
Division of analytical methods	
Significance and role of analytical chemistry	
Theoretical foundations of chemical methods	
Dissolution of substances (polar solvents, water and	
water dissolution, non-polar solvents)	

TEACHING UNIT 2 (SECOND WEEK):

SOLUTIONS (CONCENTRATION AND ACTIVITY). CHEMICAL EQUILIBRIUM

lectures 4 hours	work in a small group for 2 hours
The composition of the solution Substance quantity and concentration Activity Chemical equilibrium (law of mass action, equilibrium constant, influence on equilibrium, conditional equilibrium constants)	Preparation of a solution of a specific concentration. Computational tasks

TEACHING UNIT 3 (THIRD WEEK):

ACID-BASE REACTIONS

lectures 4 hours	work in a small group for 2 hours
Acids and bases	
Reactions between acid and base	
Dissociation of acids and bases (solvent effect)	
pH, Hydrolysis, Buffers	

TEACHING UNIT 4 (FOURTH WEEK):

COMPLEX FORMATION REACTIONS. PRECIPITATION REACTIONS.

lectures 4 hours	work in a small group for 2 hours
Equilibria in solutior	ns of complexes
Complex stabilit	y constants
Analytically significant complexes, Influence of side reactions	
Formations of complexes and nature of metal ions and ligands	
Precipitation reactions (solubility product, solubility of precipitates in pure water, Influence of common ic	
Influence of different ions, Influence of side reactions on solubility, Precipitation and ion separation	
controlling the concentration of the precipitating reagent)	

TEACHING UNIT 5 (FIFTH WEEK):

REDOX REACTIONS

lectures 4 hours	work in a small group for 2 hours
Oxidation and reduction. Electrode potential.	

Nernst's equation. Influence of solution acidity on electrode potential. Standard electrode potential

TEACHING UNIT 6 (SIXTH WEEK):

КВАЛИТАТИВНА ХЕМИЈСКА АНАЛИЗА

lectures 4 hours	work in a small group for 2 hours
Complete and partial analysis	Confirmatory tests for the cations of the firsth and
Elementary, functional and molecule analysis.	second analytical groups
Phase analysis	
Analytical reactions	
Reagents and reagents	
Separations and masking in qualitative analysis	
Analysis of cations of the first and second groups	
Phase analysis Analytical reactions Reagents and reagents Separations and masking in qualitative analysis Analysis of cations of the first and second groups	

TEACHING UNIT 7 (SEVENTH WEEK):

ANALYSIS OF CATIONS AND ANIONS

lectures 4 hours	work in a small group for 2 hours
Analysis of cations of the third, fourth and fifth groups. Anion analysis	Confirmatory tests for the cations of the third, fourth and fifth analytical groups. Confirmatory tests of anions

SECOND MODULE: Quantitative chemical analysis (volumetric methods of analysis, calculations in volumetry, acidimetry, alkalimetry, complexometry, precipitation titrations, oxidimetry and reductometry, gravimetric methods of analysis)

TEACHING UNIT 8 (EIGHTH WEEK):

QUANTITATIVE CHEMICAL ANALYSIS. VOLUMETRIC METHODS OF ANALYSIS

lectures 4 hours	work in a small group for 2 hours
Division of volumetric methods of analysis	Preparation of standard solution.
Conditions of chemical reactions	Calculations.
Equivalent and end point of titration	
Changes in reactant concentration during titration.	
Titration curves	
Indicators in volumetric titration	
Standard solutions in volumetry	
Primary solutions	
Volumetric determination techniques	

TEACHING UNIT 9 (NINTH WEEK):

lectures 4 hours	work in a small group for 2 hours
Calculating the amount of a substance	
Calculation of the mass of the titrated substance and its	Calculations in volumetry.
mass fraction in the sample	
Calculation of solution concentration in standardization	
Dilution calculations	
Calculations at retitrations	

CALCULATIONS IN VOLUMETRY

TEACHING UNIT 10 (TENTH WEEK):

ACIDYMETRY AND ALKALIMETRY

lectures 4 hours	work in a small group for 2 hours
Методе засноване на киселинско-базним реакцијама Титрација јаких киселина или јаких база Титрација слабих киселина или слабих база Титрације смесе киселина или база Титрације полипротичних киселина или база Примена киселобазних титрација	Кисело-базне титрације.

TEACHING UNIT 111 (ELEVENTH WEEK):

COMPLEXOMETRY

lectures 4 hours	work in a small group for 2 hours
Methods based on complex construction reactions EDTA as a chelating reagent The composition of the EDTA solution as a function of pH. Distribution diagram EDTA complexes with metals. Stability constants Titration curves	Complexometric titrations.
Determination of finale point of titration (FPT) Metal indicators Application of complexometry	

TEACHING UNIT 12 (TWELVE WEEK):

PRECIPITATION TITRATIONS

lectures 4 hours	work in a small group for 2 hours
Methods based on precipitation reactions Argentometry Other precipitation titrations Application of argentometric titrations	Precipitation titrations.

TEACHING UNIT 13 (THIRTEENTH WEEK):

OXIDIMETRY AND REDUCTOMETRY

lectures 4 hours	work in a small group for 2 hours
Methods based on redox reactions.	Oxidimetry and reductometry.
Titration curves	
Redox indicators	
Division of redox method	
Permanganometry	

TEACHING UNIT 14 (FOURTEENTH WEEK):

APPLICATION OF REDOX-TITRATION

lectures 4 hours	work in a small group for 2 hours
Cerimetry	Redox titrations.
Dichromatometry	
Bromatometry	
Iodatometry	
Iodine titrations	

TEACHING UNIT 15 (FIFTEENTH WEEK):

GRAVIMETRIC METHODS OF ANALYSIS

lectures 4 hours	work in a small group for 2 hours	
Sedimentation and particle size of sediment	Some examples of gravimetric determinations.	
Colloidal sediments	Calculations in gravimetry.	
Crystalline sediments		
Precipitation from homogeneous solutions		
Sediment aging		
Coprecipitation		
Deposition with corrector		
Filtration		
Sediment leaching		
Drying and annealing of sediments		
Water in solids		
Precipitation reagents		
Indirect gravimetric analysis		
Calculations in gravimetry		

WEEKLY COURSE SCHEDULE

COURSE	FRIDAY	
ANALYTICAL CHEMISTRY	LECTURES 08:00 - 11:00 (H44)	
	PRACTICE 13:00 - 16:00 (R37)	

TEACHING SCHEDULE FOR THE COURSE ANALYTICAL CHEMISTRY				
module	week	the name of the method unit	teacher	
	1	Introduction to analytical chemistry and its significance. Theoretical foundations of chemical methods of analysis.	Prof. Dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	1	Introduction to experimental work.	Mirjana Jakovljević Doc. Dr. Snežana Jovanović	
	2	Solutions (concentration and activity). Chemical equilibrium.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	2	Preparation of a solution of a specific concentration. Computational tasks.	Mirjana Jakovljević Doc. Dr. Snežana Jovanović	
		Acid-base reactions	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	3	Acid-base reactions	Mirjana Jakovljević Doc. Dr. Snežana Jovanović	
1		Complex construction reactions. Precipitation reactions.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	4	Complex construction reactions. Precipitation reactions.	Mirjana Jakovljević Doc. Dr. Snežana Jovanović	
	_	Redox reactions.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	5	Redox reactions.	Mirjana Jakovljević Doc. Dr. Snežana Jovanović	
	ſ	Qualitative chemical analysis.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	0	Confirmatory tests of cations of the first and second groups.	Mirjana Jakovljević Doc. Dr. Snežana Jovanović	
	7 Cation and a Confirmator Confirmator	Cation and anion analysis.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
		Confirmatory tests of cations of the third, fourth and fifth groups. Confirmatory tests of anions.	Mirjana Jakovljević Doc. Dr. Snežana Jovanović	
		Final test of the first module		
2	8	Quantitative chemical analysis. Volumetric methods of analysis.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	

TEACHING SCHEDULE FOR THE COURSE ANALYTICAL CHEMISTRY				
module	week	the name of the method unit	teacher	
		Preparation of standard solution. Calculations.	Mirjana Jakovljević Ana S. Živanović Doc. Dr. Snežana Jovanović	
		Calculations in volumetry.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	9	Calculations in volumetry.	Mirjana Jakovljević Ana S. Živanović Doc. Dr. Snežana Jovanović	
		Acidimetry and alkalimetry.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	10	Acid-base titrations.	Mirjana Jakovljević Ana S. Živanović Doc. Dr. Snežana Jovanović	
		Complexometry.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	11	Complexometric titrations.	Mirjana Jakovljević Ana S. Živanović Doc. Dr. Snežana Jovanović	
		Precipitation titrations.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
12	12	Precipitation titrations.	Mirjana Jakovljević Ana S. Živanović Doc. Dr. Snežana Jovanović	
		Oxidimetry and reductometry.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	13	Oxidimetry and reductometry.	Mirjana Jakovljević Ana S. Živanović Doc. Dr. Snežana Jovanović	
		Application of redox titration.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
14	14	Redox titrations.	Mirjana Jakovljević Ana S. Živanović Doc. Dr. Snežana Jovanović	

TEACHING SCHEDULE FOR THE COURSE ANALYTICAL CHEMISTRY			
module	week	the name of the method unit	teacher
	Gravimetric methods of analysis.	Prof. dr. Marija D. Živković Doc. Dr. Snežana Jovanović	
	15	Some examples of gravimetric determinations. Calculations in gravimetry.	Mirjana Jakovljević Ana S. Živanović Doc. Dr. Snežana Jovanović
	Final test of the second module		
		Final exam	