

PHARMACY – INEGRATED ACADEMIC STUDIES

FIRST YEAR

2024/2025

Course title:

PHARMACEUTICAL BIOLOGY AND GENETICS

•

ECTS: 6

Number of active teaching hours (weekly): 4 (2 lectures teaching classes, 2 practical classes)

TEACHERS AND ASSOCIATES:

РБ	First name and surname	Email	Academic title
1.	Biljana LJujić	bljujic74@gmail.com	Full Professor
2.	Olivera Milošević-Đorđević	olivera@kg.ac.rs	Full Professor
3.	Vladislav Volarević	drvolarevic@yahoo.com	Full Professor
4.	Danijela Todorović	dtodorovic@medf.kg.ac.rs	Associate Professor
5.	Marina Gazdić Janković	marinagazdic87@gmail.com	Associate Professor
6.	Danijela Cvetković	c_danijela@yahoo.com	Assistant Professor
7.	Dragana Papic	drmiloradovic7@gmail.com	Teaching assistant
8.	Dragica Pavlovic	dragica.miloradovic8@gmail.com	Teaching assistant
9.	Nikolina Kastratović	n_kastratovic@outlook.com	Teaching assistant

COURSE STRUCTURE:

Module	Name of the course module	Weeks	Teaching Lectures (weekly)	Practice (weekly)	Teacher – in charge
1.	Basics of botany Cellular and molecular organization of the genome	7	2	2	Prof. dr Marina Gazdic Jankovic
2.	Biological significance of mutations	8	2	2	Prof. dr Vladislav Volarevic

Examination Methods:

By fulfilling the pre-exam obligations and taking the oral exam, the student can achieve a maximum of 100 points. The final grade is determined on the basis of the number of earned points, which could be earned in the following ways:

PRE-EXAM OBLIGATIONS: Student can earn up to 40 points by examining two tests. The first test includes material from the first to the seventh teaching unit (the student in accordance with the demonstrated knowledge acquires 0 - 20 points). The second test includes material from the eighth to the fifteenth teaching unit (the student in accordance with the demonstrated knowledge acquires 0 - 20 points).

FINAL EXAM: The final exam is in the form of written/test exam, which is organized within the exam terms (dates), and includes total teaching material. In this way a student can earn up to 60 points in accordance with the demonstrated knowledge.

Determination of final		The maximal number of points			
	grade	Pre-exam obligations	Final exam	Σ	
1	Basics of botany Cellular and molecular organization of the genome	20	60		
2	Biological significance of mutations	20			
	Σ	40	60	100	

Determination of final grade:

To pass the exam, the student must earn the minimum of 51 total points and to fulfill the following: 1. to earn more than 50% points during the pre-exam obligations

2. to earn more than 50% points during the final exam

Grading system

Final grade	Total number of points Points grade	Description
10	91 - 100	Excellent
9	81 - 90	Exceptionally good
8	71 - 80	Very good
7	61 – 70	Good
6	51 - 60	Passing
5	< 51	Falling

LITERATURE:

Module	The title of textbook	Authors	Publisher	Library of faculty
Basics of botany	Introduction to Botany	Shipunov, Alexey	Minot State University, North Dakota, USA, 2020	URL: <u>http://ashipunov.info/shipunov/school/biol_154/textbook/intro_botany.pdf</u>
Celular and molecular organisation of the	Emery's Elements of Medical Genetics	Turnpenny P, Ellard S.	15th edition, Elsevier Ltd., UK, 2017.	
genome Biological significance of mutations	Human genetics: concepts and applications	Lewis R	9th edition, Mc Graw Hill, NY,USA, 2010.	
	Human molecular biology	Epstein J.E.	Cambrige University press, UK, 2003.	

Program of lectures and practical classes:

THE FIRST MODULE:

Basics of botany Cellular and molecular organization of the genome

<u>WEEK – 1</u>:

CELL BIOLOGY

Teaching lectures (2 class)	Practical classes (2 classes)		
Cells - differences between prokaryotic and eukaryotic cells and between plant and animal cells; the			
morphology and role of the cellular organelles; transport of matter across the cell membrane			

<u>WEEK – 2</u>:

PLANT TISSUES

Teaching lectures (2 class)	Practical classes (2 classes)	
Organization of plants. Plant tissues: meristems, parenchyma, supportive tissues, epidermis and		
periderm, vascular tissues, secretory tissues		

<u>WEEK – 3</u>:

PLANT ORGANS

Teaching lectures (2 class)	Practical classes (2 classes)	
Disert success much should store loof		

Plant organs: root, shoot, stem, leaf

<u>WEEK – 4</u>:

PLANT REPRODUCTION

Teaching lectures (2 class)	Practical classes (2 classes)
-----------------------------	-------------------------------

Plant reproduction: asexual, vegetative and sexual reproduction

<u>WEEK – 5</u>:

CELL DIVISION

Teaching lectures (2 class)	Practical classes (2 classes)	
Cell cycle Cell division mitoris and mejosis Gametogenesis spermatogenesis and oogenesis		

Cell cycle. Cell division – mitosis and meiosis. Gametogenesis – spermatogenesis and oogenesis.

<u>WEEK – 6</u>

ORGANIZATION AND FUNCTION OF HUMAN GENOME

Teaching lectures (2 class)Practical classes (2 classes)

Chromosomes - chemical structure and physical topography of chromosomes. Human karyotype. Human karyotype standardization.

<u>WEEK – 7</u>:

NUCLEIC ACIDS - STRUCTURE AND FUNCTION

Teaching lectures (2 class)	Practical classes (2 classes)
DNA, some structure longth number and function	a concerne concerne al concerne conce

DNA; gene – structure, length, number and function; genome, genotype, phenotype, gene polymorphism. RNA - structure, function and types. Mitochondrial genome

THE SECOND MODULE:

Biological significance of mutations

<u>WEEK – 8</u>:

REPLICATION OF DNA

Teaching lectures (2 class)	Practical classes (2 classes)	
Replication of DNA molecules. Replication enzymes. Transitions and transversion		

<u>WEEK – 9</u>:

PROTEIN SYNTHESIS

Teaching lectures (2 class)	Labs (2 classes)
Durate in something in the new institution and the relation Description	

Protein synthesis - transcription and translation. Regulation of gene expression: mechanisms of regulation of transcription and translation.

WEEK – 10:

GENE MUTATONS

Teaching lectures (2 class)	Labs (2 classes)

Gene mutations: definition and types of gene mutations; mechanism of gene mutations; spontaneous mutation rate. Reparative mechanisms. Diseases caused by reparation disorders

MUTAGENIC AGENTS

Teaching lectures (2 class)	Labs (2 classes)
-----------------------------	------------------

Effect of environmental agents in mutation induction. Chemical, physical and biological agents. Tests for the diagnosis of genotoxic agents: micronucleus test, SCE test and chromosomal aberration test

WEEK – 12:

NUMERICAL CHROMOSOMAL ABERRATIONS

Teaching lectures (2 class)	Labs (2 classes)		
Polyploidy and aneuploidy. Aneuploidies of autosomes and sex chromosomes and their effect on			

Polyploidy and aneuploidy. Aneuploidies of autosomes and sex chromosomes and their effect on human health. Analysis of the karyotypes with numerical aberrations of autosomes and sex chromosomes.

<u>WEEK – 13</u>:

STRUCTURAL CHROMOSOMAL ABERRATIONS

Teaching	lectures	(2 class)			Labs (2 clas	ses)		
 		-			-	-				

Structural chromosome aberrations: deletions, duplications, inversions and translocations. Syndromes that occur as a consequence of structural chromosome aberrations. Analysis of karyotypes with structural chromosome aberrations.

<u>WEEK – 14</u>:

PATTERNS OF INHERITANCE

	Teaching lectures (2 class)	Labs (2 classes)
--	-----------------------------	------------------

Patterns of inheritance in humans. Monogenic, polygenic and multifactorial inheritance.

<u>WEEK – 15</u>:

GENETIC ENGINEERING - RECOMBINANT DNA TECHNOLOGY

Teaching lectures (2 class)	Labs (2 classes)
-----------------------------	------------------

Clone and cloning. Recombinant DNA methods in medicine: hybridization, electrophoresis, PCR, bloting

WEEKLY COURSE SCHEDULE

COURSE	TUESDAY
PHARMACEUTICAL BIOLOGY WITH GENETICS	LECTURES 08:00 - 09:30 (H45)
	PRACTICE 09:40 - 12:40 (H45)

LECTURES AND PRACTICAL CLASSES

week	type	Teaching and practice lectures	Teacher		
1	L	Cell biology	Assoc. Prof. Marina Gazdić Janković		
1	Р	Cell biology	Mr. ph. Nikolina Kastratovic		
2	L	Plant tissues	Assoc. Prof. Marina Gazdić Janković		
2	Р	Plant tissues	Ass. Dragana Papic		
3	L	Plant organs	Assoc. Prof. Marina Gazdić Janković		
3	Р	Plant organs	ass. Dragica Pavlovic		
4	L	Plant reproduction	Assoc. Prof. Marina Gazdić Janković		
4	Р	Plant reproduction	Mr. ph. Nikolina Kastratovic		
5	L	Cell division	Assoc. Prof. Marina Gazdić Janković		
5	Р	Cell division	Ass. Dragana Papic		
6	L	Organization and function of human genome	Prof. dr Vladislav Volarević		
6	Р	Organization and function of human genome	ass. Dragica Pavlovic		
7	L	Nucleic acids – structure and function	Prof. dr Vladislav Volarević		
7	Р	Nucleic acids – structure and function	Mr. ph. Nikolina Kastratovic		
8	L	Replication of DNA	Prof. dr Vladislav Volarević		
8	Р	Replication of DNA THE FIRST MODULE TEST	Ass. Dragana Papic		

LECTURES AND PRACTICAL CLASSES

week	type	Teaching and practice lectures	Teacher		
9	L	Protein synthesis	Prof. dr Vladislav Volarević		
9	Р	Protein synthesis	ass. Dragica Pavlovic		
10	L	Gene mutation	Prof. dr Vladislav Volarević		
10	Р	Gene mutation	Mr. ph. Nikolina Kastratovic		
11	L	Mutagenic agents	Assoc. Prof. Marina Gazdić Janković		
11	Р	Mutagenic agents	Ass. Dragana Papic		
12	L	Numerical chromosomal aberrations	Prof. dr Vladislav Volarević		
12	Р	Numerical chromosomal aberrations	ass. Dragica Pavlovic		
13	L	Structural chromosomal aberrations	Prof. dr Vladislav Volarević		
13	Р	Structural chromosomal aberrations	Mr. ph. Nikolina Kastratovic		
14	L	Patterns of inheritance	Assoc. Prof. Marina Gazdić Janković		
14	Р	Patterns of inheritance	Ass. Dragana Papic		
15	L	Genetic engineering - recombinant DNA technology	Assoc. Prof. Marina Gazdić Janković		
15	Р	Genetic engineering - recombinant DNA technology THE SECOND MODULE TEST	ass. Dragica Pavlovic		